Chem. Ber. 118, 97 – 106 (1985)

Reaktionen von Magnesium-Cyclooctatetraen mit Dichlorphosphanen: Charakterisierung und Umlagerungen

Wolf Jürgen Richter

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a. d. Ruhr

Eingegangen am 23. Dezember 1983

Die Umsetzung von Magnesium-Cyclooctatetraen (MgCOT) mit Dichlorphosphanen RPCl₂ (R = tert-Butyl, Cyclohexyl, Menthyl) liefert 9-Phosphabicyclo[6.1.0]nonatriene $1\mathbf{b} - \mathbf{d}$, die thermisch zu syn-9-Phosphabicyclo[4.2.1]nonatrienen $2\mathbf{b} - \mathbf{d}$ umlagern. Zusätzlich lagern $1\mathbf{b}$ und \mathbf{c} nach elektrocyclischer Ringöffnung und intramolekularer [4 + 2]-Addition zu trans-Dihydrophosphindolen $3\mathbf{b}$ und \mathbf{c} um. In Gegenwart von Ni⁰-Verbindungen oder photochemisch lagern die Verbindungen 1 zu den zu 2 epimeren anti-Verbindungen 4 um. Mit RPCl₂ (R = OR, NR₂) und MgCOT erhält man die syn-9-Phosphabicyclo[4.2.1]nonatriene $2\mathbf{e}$ und \mathbf{f} unmittelbar.

Reactions of Magnesium-Cyclooctatetraene with Dichlorophosphanes: Characterization and Rearrangements

The reaction of magnesium-cyclooctatetraene (MgCOT) with dichlorophosphanes $RPCl_2$ (R = tert-butyl, cyclohexyl, menthyl) yields 9-phosphabicyclo[6.1.0]nonatrienes 1b-d, which thermally rearrange to syn-9-phosphabicyclo[4.2.1]nonatrienes 2b-d. However, 1b and c also rearrange via electrocyclic ring opening and intramolecular [4 + 2] cyclization to trans-dihydrophosphindoles 3b and c. The rearrangement of 1 in the presence of Ni^0 catalysts or photochemically was found to give the corresponding epimeric products 4 of the thermally induced process. With $RPCl_2$ (R = OR, NR_2) and MgCOT, the syn-9-phosphabicyclo[4.2.1]nonatrienes 2c, f are obtained directly.

Wie Katz bereits 1966 zeigte, führt die Umsetzung des Dilithiumsalzes des Cyclooctatetraens (Li₂COT) mit Phenylphosphonigsäuredichlorid in glatter Reaktion zu 9-Phenyl-9-phosphabicyclo[6.1.0]nonatrien (1a)¹⁾. Dieses Phosphiran-Derivat läßt sich bemerkenswert glatt unter 1,5-sigmatroper Verschiebung zu syn-9-Phenyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (2a) umlagern, woraus sich zahlreiche weitere cyclische Phosphorverbindungen synthetisieren lassen, unter anderem das entsprechende anti-9-Phenyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (4a). Mit anderen Phosphonigsäurederivaten führte diese Reaktion nicht zum Erfolg. Während unserer Untersuchungen mit Magnesium-Cyclooctatetraen (MgCOT)²⁾ und Phosphonigsäurechloriden erschien eine Arbeit von Märkl und Alig³⁾, die Li₂COT bei tiefen Temperaturen auch mit Alkylphosphonigsäurechloriden zu 9-Phosphabicyclo[6.1.0]nonatrienen umsetzen konnten. Im folgenden wird über Synthesen und spektroskopische Charakterisierung von 9-Organo-9-phosphabicyclononatrienen sowie über deren thermisch oder durch Ni⁰-katalysierte Umlagerungsprodukte berichtet.

Darstellung von 9-Phosphabicyclo[6.1.0]nonatrienen

Während Magnesium-Cyclooctatetraen (+ 2.5 THF)²⁾ mit Phenylphosphonigsäuredichlorid in Toluol nicht reagiert, führt die Reaktion bei Verwendung sperriger Alkyl98 W. J. Richter

reste am Phosphoratom (R = tert-Butyl, Cyclohexyl oder Menthyl) bei 0°C in Toluol zu den erwarteten 9-substituierten 9-Phosphabicyclo[6.1.0]nona-2,4,6-trienen 1b - d.

Die Charakterisierung dieser Verbindungen als Phosphiran-Derivate erfolgte überwiegend durch NMR-Methoden: Die 31 P-NMR-Spektren zeigen im Vergleich zu der Phenylverbindung 1a ($\delta = -181$) eine entsprechende Tieffeld-Verschiebung ($\delta = -143.8$, -162.1 und -162.8 für 1b, c und d); 1b weist die stärkste Tieffeld-Verschiebung auf, die bisher für ein substituiertes Phosphiran gemessen wurde. Aus der Analyse von $J_{\rm CP}$ bzw. $J_{\rm PH}$ wird eine *trans*-Stellung des Substituenten am Phosphoratom und des anellierten Ringes gefolgert (s. Tab. 1). Die Zuordnung der Kohlenstoffatome des 8-Ringes im 13 C-NMR-Spektrum erfolgte auf eindeutige Weise durch selektive Entkopplung. Wegen des chiralen Menthylrestes in 1d sind die Kerne im Bicyclus diastereotop; die Signalzuordnung ist deshalb nicht eindeutig. Die Frage, ob der Bicyclus eine "endo"- oder "exo"-Konformation besitzt, ließ sich für 1b auch durch NOE-Experimente nicht eindeutig klären.

Tab. 1. Ausgewählte 13 C- und 1 H-NMR-Daten der Verbindungen $1b-d^{13}$ (J in Hz)

$$P-F$$

¹³ C-NM	IR .						
	R	C-1	C-2	C-3	C-4		R
1 b	t Bu	28.60	128.57	127.45	124.8		(tBu) 28.9
1 c	c-C ₆ H ₁₁	$J_{\rm PC}$ 37.2 30.39 $J_{\rm PC}$ 34.8	128.28	12.7 126.75 8.2	124.5 –		15.7 (P – CH)
1 d	Menthyl	$J_{\rm PC}$ 35.1	128.8 11.2	127.1 8.7	124.8		(P – CH)
¹H-NM	D		128.2 11.2	8.6	124.8		
H-INM	R R	H^1	H^2	H^3		H^4	R
1b	t Bu	$J_{\rm P} = 5$	6.23 $J_{\rm P} = 7$		11.5	5.81	0.75 (C(CH_3)_3) $J_P = 11.5$
1c	c-C ₆ H ₁₁	1.96	•	5.89		5.83	•
1 d	Menthyl	2.0	6.32	5.90		5.8	

Thermische Isomerisierung von 1

Während die Phosphirane 1 durch eine Kurzweg-Destillation gereinigt werden können, erfolgt bei längerer thermischer Belastung (2 h, Toluol-Rückfluß) bei den Verbindungen 1b und c vollständige Isomerisierung zu zwei neuen Verbindungen, die sich u. a. in ihren ³¹P-NMR-Signalen stark unterscheiden; so erhält man aus 1b die Isomeren 2b und 3b mit $\delta P = -85.5$ und ± 18.5 im Verhältnis 3:5, und aus 1c die Isomeren 2c und 3c mit $\delta P = -101.3$ und ± 2.5 im Verhältnis 4:5.

Während den Verbindungen des Typs 2 die schon von der Phenylverbindung 2a^{1a)} her bekannte 9-syn-substituierte 9-Phosphabicyclo[4.2.1]nona-2,4,7-trien-Struktur zu-kommt – kenntlich an der ²J_{PC}-Kopplung von 14 – 18 Hz bzw. der ³J_{PH}-Kopplung von 10 – 12 Hz⁴⁾ – bereitete die Aufklärung der Struktur von 3 zunächst Schwierigkeiten, zumal die Verbindung immer zusammen mit 2 auftrat und eine Abtrennung bisher nicht gelang. Durch unabhängige Synthese der 9-anti-substituierten 9-Phosphabicyclo-[4.2.1]nona-2,4,7-triene 4b und c (s. nächster Abschnitt) konnte diese Struktur für 3b und c ausgeschlossen werden. Auch die von der zu 1 homologen Stickstoffverbindung bekannte Cope-Umlagerung, die zum 4-Azabicyclo[5.2.0]nona-2,5,8-trien 5 führt⁵⁾, konnte bei den Phosphorverbindungen 3b und c nicht produktbestimmend sein, da im ¹H-NMR-Spektrum nicht das für 5 typische Singulett bei 3.7 ppm beobachtet wird, und die Zahl der ¹³C-NMR-Signale größer ist als für ein symmetrisches Bicyclo[5.2.0]nonatriengerüst möglich.

Für 3b und c wird aufgrund der $^1\text{H-}$ und $^{13}\text{C-}\text{NMR-Spektren}$ eine *trans*-anellierte Dihydrophosphindol-Struktur vorgeschlagen: Das $^{13}\text{C-}\text{NMR-Spektrum}$ zeigt 6 olefinische C-Atome (Dubletts) sowie 2 tertiäre C-Atome für das Ringsystem, die J_{PC} -Kopplungen sind alle unterschiedlich. In den $^1\text{H-}\text{NMR-Spektren}$ ist die Kopplung der beiden Protonen am Brückenkopf bemerkenswert ($J_{HH} \approx 20~\text{Hz}$, s. Tab. 4). Aus den Kopplungskonstanten von H^1 und H^6 folgt die *trans*-Konfiguration des Substituenten am Phosphor relativ zu H^1 und entsprechend *cis* zu $H^{6.6}$). Als Literaturvergleich findet sich das von *Mesch* und *Quin* 7 0 durch Retro-McCormack-Reaktion aus einem 7-Phosphanorbornen hergestellte *cis*-3a,7a-Dihydro-1-methyl-1*H*-phosphindol (6), für das die

Tab. 2. 13 C-NMR-chemische Verschiebungen und Kopplungskonstanten der Verbindungen 2 und 413) (J in Hz; n. b. = nicht bestimmt, n. z. = nicht zugeordnet)

	×	Konfiguration C-1	C-2	C-3	C 4	C-5	C-6	C-7	C-8
28	Ph	syn 39.05	136.29	126.12	123.29	134.02	131.39	127.26	126.34
42		anti $\frac{45.31}{I_{-1}}$	131.45	125.79	121.75	138.81	127.60	127.92	126.34
2 b	/Bu	2 PC 1773 Syn 38.3 1 Dr. 24.7	137.60	126.55 2.0	124.3	27.99 14.4	28.99	ì	
4 b		anti $\frac{42.02}{J_{\rm PC}}$ 22.7	134.19	125.70	120.84	26.93 26.6	29.25 15.8		
7c	$c\text{-}\mathrm{C}_6\mathrm{H}_{11}$	$syn = \frac{37.82}{J_{PC} 16.3}$	135.30 8.3	125.48	124.64 14.0	33.56 18.9	28.10 17.0	26.52 10.5	26.52 n. b.
4c		anti $\frac{42.31}{J_{PC}}$	134.71 12.9	125.43	122.12	32.47	29.99 15.9	26.52 10.5	26.31 n. b.
2d	Menthyl	$syn = 48.25$ $J_{PC} 20.7$ 42.11	137.21 8.0 135.99	125.3 2.1 124.9	123.48 15.1 125.34	n. z. n. z.			
2e	$\mathrm{Et}_{2}\mathbf{N}$	$J_{PC} 20.1$ $syn \qquad 41.66$ $J_{PC} 26.3$	7.5 135.73 7.0	_ 126.79 2.4	12.9 124.98 21.8	42.82	15.29		
2 f	O-Menthyl	syn 43.31 J _{PC} 18.8 42.38	133.84 9.3 133.62	127.83 1.0 127.76	125.22 17.8 125.07	80.31	n. z. n. z.		

	H^1	H^2	H^3	H ⁴	R
2 b	3.15 J _P 18.1	6.05 3.3	5.90 0	5.26 10.6	0.93 C(CH ₃) ₃ 11.5
4b	$J_{ m P} = \frac{2.87}{4.0}$	6.01 n. b.	5.75 n. b.	5.14 3.0	0.9 C(CH ₃) ₃ 11.5
2 c	$J_{ m P} 18.4$	5.96 3.4	5.84 0	5.21 10.5	$\approx 1.2, \approx 1.5 \text{ C}_6 \text{H}_{11}$
4c	$J_{\rm P} = 3.0$	≈ 6	5.0	5.26 2.0	$\approx 1.2, \approx 1.5 \text{ C}_6 \text{H}_{11}$
2 d	$J_{ m P} 17.0$	≈ 5	5.9	5.22 10.5	
2e	$J_{ m P}$ 18.0	≈ 5	5.98	5.52 10.9	2.72 NCH ₂ 0.92 CH ₃ 9.0
2 f	$J_{\rm P}$ 19.5	$(J_{1,2} = 8)$	5.75	5.18 11.0	3.44 POCH 9.0

Tab. 3. Ausgewählte 1 H-NMR-Daten der Verbindungen 2 und 13) (*J* in Hz; n. b. = nicht bestimmt)

Zuordnung der olefinischen ¹³C-NMR-Signale allerdings nicht eindeutig ist. Kürzlich wurde auch das analoge Phenyl-Derivat (3a) beschrieben, allerdings als *P*-Oxid⁸. Aus diesem Grund ist ein Vergleich der PC-Kopplungskonstanten nicht möglich.

Vom Stammkohlenwasserstoff für 1, Bicyclo[6.1.0]nona-2,4,6-trien, sind die thermische und die durch Rh^I katalysierte Umlagerung zu Dihydroinden beschrieben⁹⁾; Isomerisierungsversuche von 1c mit [Rh(CO)₂Cl]₂ in Toluol führten allerdings nicht zu 2c, sondern nur zu einem Isomerengemisch mit 4c als Hauptkomponente. Im Gegensatz zum Isomerisierungsverhalten von 1b erhält man bei thermischer Behandlung der Menthyl-Verbindung 1d nur den *syn*-substituierten Bicyclus 2d und kein 3d.

Photochemische und Ni⁰-katalysierte Umlagerung von 1

Wir fanden, daß 9-Phosphabicyclo[6.1.0]nonatriene ganz ähnlich wie die von uns untersuchten 1-substituierten 2-Vinylphosphirane photochemisch und durch Ni⁰ katalysiert zu substituierten Phospholenen umgelagert werden ¹⁰. Während bei den Vinylphosphiranen die thermisch und photochemisch bzw. durch Ni⁰-Katalyse erzeugten Umlagerungsprodukte (Phospholene) identisch sind, erhält man von 1 ausgehend in Toluol bei Raumtemperatur das zu 2 epimere *anti-9*-substituierte 9-Phosphabicyclo-[4.2.1]nona-2,4,7-trien 4 als einziges Produkt.

Die Struktur von 4 folgt u. a. aus der relativ kleinen ${}^2J_{PC}$ -Kopplung zur olefinischen Doppelbindung (${}^2J_{PC}=2.0-2.4$ Hz, s. Tab. 2) sowie aus der entsprechend kleinen ${}^3J_{PH}$ -Kopplung. Auch die Verbindung 1a wurde mit Ni 0 zu 4a isomerisiert und ermöglicht so den Vergleich mit Literaturwerten $^{(1)}$. Durch Bestrahlung mit einem HPK-125 W-Brenner in Benzol erhält man die gleichen Produkte 4.

Eine Gegenüberstellung der epimeren Verbindungen 2 und 4 zeigt den großen Unterschied in der chemischen Verschiebung der 31 P-NMR-Signale; die Differenz $\Delta\delta P = 90$ ppm übertrifft auch den für *syn*- und *anti*-substituierte 7-Phosphanorbornene gefundenen Wert von $\Delta\delta P = 66.2$ ppm deutlich⁷⁾. Die Auswirkungen der Isomerie auf die 1 H- und 13 C-NMR-Spektren sind so charakteristisch, daß sie ein gutes Unterscheidungskriterium für die Verbindungsklasse bilden.

Tab. 4. Ausgewählte ¹³C- und ¹H-NMR-Daten der Verbindungen 3, Vergleich mit 6⁶⁾ (Die Bezifferung der C-Atome entspricht nicht den systematischen Namen)

						(9			,	$J_{1,6} = 20$,	$J_{1,6} = 21.4$
	اد	132.1	15.0	138.78	17.6	132.5	18.6	H ₈	60.9	7.4	n. z.	
F	3	138.5	8.9	138.04	6.1	141.7	4.9	H ⁷	5.92	28.2	n. z.	
	3	47.3	10.2	47.53	10.2	45.0	2.0	$^{ m H_{e}}$	3.21	0	3.19	0
	3	127.39	8.1	127.05	8.1	124.6	4.9	ΗŞ	6.12	4.1	6.14	
	C-4	124.9	1.1	124.84	0	122.3	2.9	H^4	5.84	0	5.9	
	C-3	131.5	3.0	131.77	4.1	121.1	11.7	H^3	5.98	n. z.	9	
	C-2	130.3	16.0	130.29	16.3	128.0	17.6	H^2	6.30	5.9	6.30	
	C-1	43.9	$J_{ m pc} 13.8$	46.88	$J_{ m pc}$ 10.2	42.3	$J_{ m PC}$ 5.9	H^1	2.78	$J_{ m PH}$ 6.6	2.73	$J_{ m PH}$ 7.2
	×	tBu		c-C _e H ₁ ,	11 0	CH,	.	~	/Bu		c-C ₆ H ₁₁	
13C-NMR		36		3c		9		¹ H-NMR	3.6		3c	

Umsetzungen von MgCOT mit Verbindungen des Typs $XPCl_2$ (X = NR_2 , OR)

Die Reaktion von (Diethylamino)phosphorigsäuredichlorid mit MgCOT in Toluol ermöglicht die Isolierung und Charakterisierung des syn-Addukts 2e, das bisher nur als Zwischenprodukt bei der entsprechenden Umsetzung mit Li₂COT postuliert wurde³⁾. Die syn-Struktur folgt aus den ³¹P-NMR-Spektren ($\delta = -52.3$) sowie aus $^2J_{PC} = 21.8$ und $^3J_{PH} = 9$ Hz (s. Tab. 2 und 3). Wir finden auch bei schonender Aufarbeitung keinen Hinweis auf die primäre Bildung des ebenfalls postulierten Phosphirans 1e. Dieses Ergebnis entspricht dem Verhalten von $Et_2N - PCl_2$ gegenüber Magnesium-Butadien; auch hier konnte keine Phosphiran-Bildung beobachtet werden 10). Auch eine stärker elektronegative Gruppe wie OR am Phosphoratom wirkt in der gleichen Richtung: Die Umsetzung von (Menthyloxy)phosphorigsäuredichlorid mit MgCOT ergibt nur das syn-Addukt 2f und wiederum keine Hinweise auf ein Primärprodukt 1f. Die Struktur von 2f folgt eindeutig aus den NMR-Spekten, wie Tab. 2 und 3 zeigen ($\delta P = +11.6$, $^2J_{PC} \approx 18$ Hz), wobei die Protonen bzw. die Kohlenstoffatome des Bicyclus durch den chiralen Menthyloxy-Substituenten wie schon in 2d diastereotop sind.

$$MgCOT + XPCl_2 \longrightarrow \begin{array}{c} X \\ \hline 2e \\ \hline f \\ Menthyl-O \end{array}$$

Diskussion und Ergebnisse

Wie die experimentellen Befunde zeigen, lassen sich Alkylphosphonigsäuredichloride, die am α -Kohlenstoffatom verzweigt sind, mit MgCOT in guten Ausbeuten ($\approx 50\%$) zu 9-Organo-9-phosphabicyclo[6.1.0]nonatrienen umsetzen. Orientierende Versuche mit unverzweigten Resten am P-Atom wie MePCl₂ oder PhCH₂PCl₂ führten bisher stets zu komplexen Gemischen, in denen die Phosphiran-Derivate nur als Nebenprodukte ³¹P-NMR-spektroskopisch nachweisbar waren ($\delta = -163$ bzw. -176). Die beobachtete Phosphiran-Bildung läßt sich durch eine zweifache Substitution am P-Atom beschreiben, wobei eine Crotyl-analoge Zwischenstufe I durchlaufen würde.

Die charakteristische Eigenschaft einer Crotyl-Grignard-Verbindung, bevorzugt in 3-Stellung zum Magnesium zu reagieren¹¹⁾, würde auch hier die formale 1,2-Addition erklären. Damit ist auch der Befund im Einklang, daß MgCOT mit Diorganochlorphosphanen ausschließlich Produkte liefert, die aus einem *trans*-7,8-disubstituierten Cyclooctatrien abgeleitet werden können¹²⁾.

Die thermische Umlagerung von 1, die zu syn-substituierten 9-Phosphabicyclo-[4.2.1]nonatrienen 2 führt, läßt sich als sigmatrope 1,5-Verschiebung aus der "endo"- 104 W. J. Richter

Konformation interpretieren¹⁾. Die Bildung von **3b** und **c** setzt eine elektrocyclische Öffnung des *cis*-anellierten 3-Rings zum substituierten Phosphonin (II) mit *trans/cis/cis/cis-*Struktur voraus.

$$P^{-R} \longrightarrow \begin{bmatrix} & & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Aus dem Phosphonin bildet sich dann durch intramolekulare [4 + 2]-Cycloaddition das entsprechende *trans*-3a,7a-Dihydrophosphindol 3. Ein analoger Weg ist kürzlich auch für die thermische Isomerisierung des von 1a abgeleiteten Phosphiranoxids vorgeschlagen worden, das zum 3a,7a-Dihydro-1-phenylphosphindol-1-oxid führt⁸⁾. Daß bei der thermischen Isomerisierung von 1d nur 2d, nicht aber das analoge Dihydrophosphindol-Derivat 3d beobachtet wird, mag an der höheren Temperatur liegen, die für die Umlagerung erforderlich ist.

Die durch Ni⁰-katalysierte Umlagerung von 1 nach 4 folgt dem Schema einer 1,3-sigmatropen Verschiebung, die thermisch verboten ist, wenn keine Inversion am Phosphoratom stattfindet. Gleichzeitige Inversion am Phosphoratom würde aber zu dem bereits bekannten Produkt 2 führen. Auch die ebenfalls zu 4 führende photochemische Reaktion ist im Sinne einer 1,3-sigmatropen Verschiebung zu deuten.

Die Bildung der syn-Derivate 2e und f, für die keine Phosphiran-Derivate 1e, f nachgewiesen werden konnten, ist entweder auf die geringe thermodynamische Stabilität von 1e und f zurückzuführen oder aber auf eine andersartige Substitution des postulierten Zwischenprodukts I mit Crotyl-Grignardstruktur; die P(OR)Cl- bzw. P(NR₂)Cl-Substitution in 4-Stellung zum Magnesium könnte im Gegensatz zum PRCl-Substituenten die Zweitsubstitution in 1-Stellung zum Metall begünstigen. Unterstützung findet dieses Argument auch dadurch, daß (CH₃)₂SiCl₂ mit Magnesium-COT ebenfalls das 1,4-Addukt, 9,9-Dimethyl-9-silabicyclo[4.2.1]nona-2,4,7-trien liefert ¹³⁾.

Mein Dank gilt den Herren Dr. R. Mynott und Dr. R. Benn und ihren Mitarbeitern aus der NMR-Abteilung sowie Frau J. Jakobs und Frau B. Neugebauer für ihre experimentelle Mitarbeit.

Experimenteller Teil

Alle Arbeiten wurden unter Argon in wasserfreiem Lösungsmittel durchgeführt. – MS: Varian MAT CH-5. – 1 H-NMR: Bruker WP 80 bzw. HX 400 ($C_{6}D_{6}$, innerer Standard TMS). – 13 C-NMR: Varian XL-100 (CDCl₃, innerer Standard TMS). – Elementaranalysen: Dornis und Kolbe, Mikrochemisches Laboratorium Mülheim a. d. Ruhr.

9-tert-Butyl-9-phosphabicyclo[6.1.0]nona-2,4,6-trien (1b): Zu einer Suspension von 6.7 g (22 mmol) Magnesium-Cyclooctatetraen (MgCOT × 2 1/2 THF)²⁾ in 100 ml absol. Toluol tropft man während 2 h bei 0°C eine Lösung von 3.0 g (19 mmol) tBuPCl₂ in 40 ml absol. Toluol. Man läßt 18 h nachreagieren und filtriert den bräunlichen Niederschlag über eine D 3-Fritte. Vom gelben Filtrat wird das Lösungsmittel abgezogen und der Rückstand umkondensiert. Man erhält bei 68 – 70°C/Hochvak. 2.4 g 1b (66%). – ³¹P-NMR: δ = -143.8. – ¹H- und ¹³C-NMR: s. Tab. 1. – MS (70 eV): m/z = 192, 136 (90%), 135, 133, 108, 91, 57 (100%).

C₁₂H₁₇P (192.3) Ber. C 74.96 H 8.91 P 16.12 Gef. C 74.84 H 8.86 P 15.94

9-Cyclohexyl-9-phosphabicyclo[6.1.0]nona-2,4,6-trien (1c) wird entsprechend aus 3.9 g (13 mmol) MgCOT und 2.2 g (12 mmol) c- C_6H_{11} PCl₂ in absol. Toluol hergestellt. Die entstandene Suspension wird mit 120 ml luftfreiem Wasser zersetzt und mit NaHCO₃ neutralisiert. Nach Phasentrennung und Trocknen über Na₂SO₄ wird das Lösungsmittel abgezogen und der braune Rückstand umkondensiert. Man erhält bei 95 – 100°C/Hochvak. 1.1 g 1c (50%). – 31 P-NMR: $\delta = -163.0.$ – 1 H- und 13 C-NMR: s. Tab. 1. – MS (70 eV): m/z = 218, 136 (80%), 135 (100%), 108, 91, 57, 55, 41.

C₁₄H₁₉P (218.3) Ber. C 77.04 H 8.77 P 14.19 Gef. C 77.19 H 8.70 P 14.20

9-Menthyl-9-phosphabicyclof6.1.0/Inona-2,4,6-trien (1d) wird entsprechend aus 3.1 g (10 mmol) MgCOT und 2.1 g (7.8 mmol) Menthyl-PCl₂ in absol. Toluol hergestellt; Aufarbeitung wie bei 1c. Der orangefarbene viskose Rückstand läßt sich nicht unverändert destillieren oder umkondensieren; Kristallisationsversuche waren bisher nicht erfolgreich. Die Verbindung enthält $\approx 5\%$ der Neomenthylverbindung. - ³¹P-NMR: $\delta = -160.1$, -167.3 ($\approx 5\%$). - ¹H- und ¹³C-NMR: s. Tab. 1. - MS (70 eV): m/z = 274, 163, 136, 135 (100%), 91, 55.

Isomerisierung von **1b** zu syn-9-tert-Butyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (**2b**) und trans-1-tert-Butyl-3a,7a-dihydro-1H-phosphindol (**3b**): Die Lösung von 2.6 g (13.5 mmol) **1b** in 10 ml absol. Toluol wird 3 h unter Rückfluß erhitzt. Danach wird das Lösungsmittel abgezogen und der Rückstand bei $63-65\,^{\circ}$ C/Hochvak. destilliert. Ausb. 2.5 g (96%) **2b** und **3b**. $-^{31}$ P-NMR: $\delta=-85.5$ und +18.5, Verhältnis 36:51. $-^{1}$ H- und 13 C-NMR: s. Tab. 2-4. MS (70 eV): m/z=192,136 (100%), 135, 133, 108, 91, 65, 57, 41; beide Isomere unterscheiden sich nur in der Intensität von m/z=135.

Isomerisierung von 1c zu syn-9-Cyclohexyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (2c) und trans-1-Cyclohexyl-3a,7a-dihydro-1H-phosphindol (3c): Die Lösung von 1.5 g (6.8 mmol) 1c in 10 ml Toluol wird 2 h unter Rückfluß erhitzt. Nach Abziehen des Lösungsmittels wird der Rückstand im Hochvak. bei ca. 110°C umkondensiert, 1.3 g (87%) 2c und 3c. - ³¹P-NMR: δ = - 101.3 und + 2.5, Verhältnis 37: 50. - ¹H- und ¹³C-NMR: s. Tab. 2 – 4. - MS (70 eV): m/z = 218 (50%), 136 (100%), 135 (90%), 108, 91, 65, 55.

Isomerisierung von 1d zu syn-9-Menthyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (2d): Aus 2.7 g (10 mmol) 1d erhält man nach 4 h Kochen in 15 ml absol. Toluol eine dunkelbraune Lösung, die nach Abziehen des Lösungsmittels und Umkondensieren bei $\approx 130^{\circ}$ C/Hochvak. 2.0 g (72%) 2d als gelbe, viskose Flüssigkeit ergibt. - ³¹P-NMR: $\delta = -90.6$. - ¹H- und ¹³C-NMR: s. Tab. 2 und 3. - MS (70 eV): m/z = 274 (20%), 163, 136 (50), 135 (100), 91, 55.

C₁₈H₂₇P (274.4) Ber. C 78.78 H 9.91 P 11.29 Gef. C 78.66 H 9.99 P 11.23

Umlagerung von **1b** mit Ni⁰ zu anti-9-tert-Butyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (**4b**): Zu 20 mg (0.073 mmol) Ni(COD)₂ in 3 ml absol. C_6D_6 werden 500 mg (26 mmol) **1b** gegeben; die Lösung verfärbt sich sofort orangebraun. Man läßt 48 h bei Raumtemp. rühren und kondensiert die flüchtigen Bestandteile im Hochvak. ab; dabei bleibt ein dunkelbrauner Rückstand. Aus dem Kondensat lassen sich 430 mg (84%) **4b**, Sdp. 72°C/Hochvak., isolieren. - ³¹P-NMR: $\delta = +6.7.$ - ¹H- und ¹³C-NMR: s. Tab. 2 und 3. - MS (70 eV): m/z = 192, 136 (100%), 135, 108, 91, 57.

C₁₂H₁₇P (192.3) Ber. C 74.96 H 8.91 P 16.12 Gef. C 75.09 H 8.88 P 15.93

Umlagerung von 1¢ mit Ni^0 zu anti-9-Cyclohexyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (4¢): Aus 640 mg (29 mmol) 1¢ werden in 3 ml absol. C_6D_6 in Gegenwart einer katalytischen Menge von Ni(COD)₂ auf entsprechende Weise 600 mg (93%) 4¢, Sdp. 98°C/Hochvak., gewonnen. - ³¹P-NMR: δ = - 10.5. - ¹H- und ¹³C-NMR: s. Tab. 2 und 3. - MS (70 eV): m/z = 218 (50%), 136 (70), 135 (100), 108, 91, 55.

C₁₄H₁₉P (218.3) Ber. C 77.04 H 8.77 P 14.19 Gef. C 76.93 H 8.72 P 14.05

106 W. J. Richter

Umlagerung von 1a mit Ni⁰ zu anti-9-Phenyl-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (4a): Zu Vergleichszwecken wurde 1a nach Lit. ¹⁾ hergestellt und 450 mg (21 mmol) davon entsprechend zu 430 mg (95%) $4a^{1)}$ umgelagert. - ³¹P-NMR: $\delta = -13.2. -$ ¹³C-NMR: s. Tab. 2.

Isomerisierung von 1c mit Bis(dicarbonylchlororhodium(I)): 0.40 g (19 mmol) 1c werden mit 20 mg (0.10 mmol) $[(CO)_2RhCl]_2$ in absol. C_6D_6 versetzt, wobei eine tiefrote Lösung entsteht. Nach Rühren über Nacht bei Raumtemp. und Kondensation im Hochvak. erhält man ein Gemisch von Verbindungen, darunter 4c (60%) als Haupkomponente.

Photoisomerisierung von 1b zu 4b: Die Lösung von 150 mg 1b in 0.8 ml absol. C_6D_6 wird in einem 5-mm-NMR-Röhrchen eingeschmolzen. Nach 4 h Belichtung mit einem HPK-Brenner 125 W ist die Probe vollständig umgelagert; das Hauptprodukt ($\approx 92\%$) ist 4b, wie der Spektrenvergleich zeigt (31 P-NMR: $\delta = +6.8$).

Photoisomerisierung von 1c zu 4c: 1c wird entsprechend wie 1b im abgeschmolzenen NMR-Röhrchen 4 h in C_6D_6 belichtet und das Umlagerungsprodukt als 4c ($\approx 90\%$) identifiziert (31 P-NMR: $\delta = -10.5$).

Photoisomerisierung von 1d zu 4d: 1d wird entsprechend in C_6D_6 zu 4d ($\approx 70\%$) isomerisiert (31 P-NMR: $\delta = -7.7$).

syn-9-(Diethylamino)-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (2e): Darstellung wie bei 1b. Aus 1.5 g (8.8 mmol) Dichlor(diethylamino)phosphan und 3.0 g (9.7 mmol) MgCOT erhält man 1.5 g (82%) 2e, Sdp. 125 – 128 °C/Hochvak. - ³¹P-NMR: δ = - 52.3. - ¹H- und ¹³C-NMR: s. Tab. 2 und 3. - MS (70 eV): m/z = 207, 135, 103, 74 (100%), 46.

C₁₂H₁₈NP (207.3) Ber. C 69.54 H 8.75 P 14.94 Gef. C 69.15 H 8.70 P 13.99

syn-9-(Menthyloxy)-9-phosphabicyclo[4.2.1]nona-2,4,7-trien (2f): Darstellung wie bei 1b. Aus 3.8 g (15 mmol) Dichlor(menthyloxy)phosphan und 4.7 g (15 mmol) MgCOT erhält man bei 130–135 °C/Hochvak. 2.3 g (54%) 2f als gelbes, hochviskoses Öl. – 31 P-NMR: δ = +11.6. – 1 H- und 13 C-NMR: s. Tab. 2 und 3. – MS (70 eV): m/z = 290, 153 (80%), 152 (100), 134, 105, 55.

C₁₈H₂₇PO (290.4) Ber. C 74.45 H 9.37 P 10.6 Gef. C 75.00 H 9.30 P 10.4

[418/83]

¹⁾ Th. J. Katz, R. Nicholson und C. A. Reilly, J. Am. Chem. Soc. 88, 3832 (1966); E. W. Turnblom und Th. J. Katz, ebenda 95, 4292 (1973).

²⁾ H. Lehmkuhl, S. Kintopf und K. Mehler, J. Organomet. Chem. 1972, 46, C1.

³⁾ G. Märkl und B. Alig, Tetrahedron Lett. 23, 4915 (1982).

⁴⁾ Vgl. L. D. Quin, The Heterocyclic Chemistry of Phosphorus, Wiley-Interscience, New York 1981

⁵⁾ S. Masamune und N. T. Castellucci, Angew. Chem. 76, 569 (1964); Angew. Chem., Int. Ed. Engl. 3, 582 (1964).

⁶⁾ NMR-Datensammlung, Max-Planck-Institut für Kohlenforschung.

⁷⁾ K. A. Mesch und L. D. Quin, Tetrahedron Lett. 21, 4791 (1980); vgl. ¹³C NMR Spectral Data, Thermodynamics Research Center, Hydrocarbon Project, Serial No. 823.

⁸⁾ N. A. Rao und L. D. Quin, J. Am. Chem. Soc. 105, 5960 (1983).

⁹⁾ R. Grigg, R. Hayes und S. Sweeney, Chem. Commun. 1971, 1248.

¹⁰⁾ W. J. Richter, Chem. Ber. 116, 3293 (1983).

¹¹⁾ R. A. Benkeser, Synthesis **1971**, 347.

¹²⁾ R. Benn, R. Mynott und W. J. Richter, Z. Naturforsch. 39b, 79 (1984).

¹³⁾ Th. J. Barton und M. Juvet, Tetrahedron Lett. 1975, 2561.